Analytical Solution of Diffusion Thermo Effect on MHD Second Grade Fluid Flow with Heat Generation and Chemical Reaction through an Accelerated Vertical Plate

Author:

Abstract

Abstract: The objective of this model is to examine the Dufour effect on unsteady free convection second-grade fluid flow past an accelerated moving plate subjected to the magnetic field through a porous medium. The thermal radiation and chemical reactions are also taken into account. The constitutive governing equations of the model with all levied initial and boundary conditions are written in non-dimensional form. The non-dimensional equations that govern the flow model are transformed into a time-fractional model using the Caputo, Caputo–Fabrizio, and Atangana–Baleanu time-fractional derivatives. The Laplace transform technique is applied to the differential equations of the flow model to obtain the exact solution for concentration, temperature, and velocity fields. The expression for the Sherwood number, the Nusselt number, and skin friction are also derived analytically. The effects of diffusion-thermo, chemical reactions, second-grade parameterfractional parameter (γ), porosity, magnetic parameter, heat absorption/generation, and thermal radiation on velocity profiles are studied through various figures. It is observed that the velocity profiles for Caputo–Fabrizio fractional derivatives are higher as compared to Caputo and Atangana–Baleanu fractional derivatives. It is also seen that for the value of fractional parameter γ→1, the velocity profiles obtained via Caputo, Caputo–Fabrizo, and Atangana–Baleanu derivatives are identical. Keywords: Second-grade fluid, Free convection, Chemical reaction, Diffusion thermo, Heat generation, Caputo, Caputo–Fabrizio, Atangana–Baleanu fractional derivative.

Publisher

Yarmouk University

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3