Study of the High Rotational Bands of Moderately Heavy Nuclei

Author:

Abstract

Abstract: This paper provides a study of the rotational properties of heavy and medium nuclei, particularly the paired nuclei existing in the rare-earth, including Gd, Er, …, first to have a good representation of the intrinsic prolate fundamentals of the considered nuclei. The most important residual nuclear interaction is the pairing force which makes it possible to couple the nucleons in pairs. To take it into account, we introduce the Bardeen-Cooper-Shrie formalism (BCS), developed to describe the phenomenon of superconductivity. The test wave function is then more elaborate than that of Hartree-Fock and corresponds to a state no longer of independent particles, but of independent quasi-particles. A quasi-particle state (qp) is a linear combination of particles and holes. The Routhian Hartree-Fock model through the analysis of the experimental spectra of rotation of the deformed nucleus was usewd. Knowing that this was originally expanded by Bohr-Mottelson by applying I(I+1) expansion, we modified an existing fixed code (HF) with axial symmetry, which extended in a way that allows us to add constraints on the angular momentum and kelvin rotation to the Hamiltonian known as Cr.HF (cranking version of this formalism), initially studied by P. Quentin. This modification led to good results, especially the spectra of rotation and the angular velocities as a function of the angular momentum. Besides, it led to a decrease in the moment of inertia after it was large in some models, such as in the Hartree-Fock-Bogoliubov (HFB) model. The rotational properties and the moments of inertia of the super-deformed bands of some deformed nuclei have been studied as well as in the mass regions A=190; A=160. The results were compared with experimental results which gave good agreement. This work will offer an interesting perspective necessary for certain improvements or extensions of the Cr.HF. Keywords: Microscopic mean field, Collective nuclear rotation, Angular momentum Routhian Hartree-Fock (RHF) model, Inertia moments, Angular velocity.

Publisher

Yarmouk University

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3