Investigating computational geometry for failure prognostics

Author:

Ramasso Emmanuel

Abstract

Prognostics and Health Management (PHM) is a multidisciplinary field aiming at maintaining physical systems in their optimal functioning conditions. The system under study is assumed to be monitored by sensors from which are obtained measurements reflecting the system’s health state. A health indicator (HI) is estimated to feed a data-driven PHM solution developed to predict the remaining useful life (RUL). In this paper, the values taken by an HI are assumed imprecise (IHI). An IHI is interpreted as a planar figure called polygon and a case-based reasoning (CBR) approach is adapted to estimate the RUL. This adaptation makes use of computational geometry tools in order to estimate the nearest cases to a given testing instance. The proposed algorithm called RULCLIPPER is assessed and compared on datasets generated by the NASA’s turbofan simulator (C-MAPSS) including the four turbofan testing datasets and the two testing datasets of the PHM’08 data challenge. These datasets represent 1360 testing instances and cover different realistic and difficult cases considering operating conditions and fault modes with unknown characteristics. The problem of feature selection, health indicator estimation, RUL fusion and ensembles are also tackled. The proposed algorithm is shown to be efficient with few parameter tuning on all datasets.

Publisher

PHM Society

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Safety, Risk, Reliability and Quality,Civil and Structural Engineering,Computer Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3