Affiliation:
1. Kim Il Sung University
Abstract
In the present paper, we study the time-space fractional diffusion equation involving the Caputo differential operator and the fractional Laplacian. This equation describes the Lévy flight with the Brownian motion component and the drift component. First, the asymptotic behavior of the fundamental solution of the fractional diffusion equation is considered. Then, we use the fundamental solution to obtain the representation formula of solutions of the Cauchy problem. In the last, the
L
2
-decay estimates for solutions are proved by employing the Fourier analysis technique.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献