Global bifurcation of positive solutions for a class of superlinear elliptic systems

Author:

Ma Ruyun12,Zhu Yan2,Zhang Yali2

Affiliation:

1. Xidian University

2. Northwest Normal University

Abstract

We are concerned with the global bifurcation of positive solutions for semilinear elliptic systems of the form { Δ u = λ f ( u , v ) in   Ω , Δ v = λ g ( u , v ) in   Ω , u = v = 0 on   Ω , where λ R is the bifurcation parameter, Ω R N , N 2 is a bounded domain with smooth boundary Ω . We establish the existence of an unbounded branch of positive solutions, emanating from the origin, which is bounded in positive λ -direction. The nonlinearities f ,   g C 1 ( R × R , ( 0 , ) ) are nondecreasing for each variable and have superlinear growth at infinity. The proof of our main result is based upon bifurcation theory. In addition, as an application for our main result, when f and g subject to the upper growth bound, by a technique of taking superior limit for components, then we may show that the branch must bifurcate from infinity at λ = 0 .

Publisher

University of Szeged

Subject

Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3