Exact solution of the Susceptible–Exposed–Infectious–Recovered–Deceased (SEIRD) epidemic model

Author:

Yoshida Norio1ORCID

Affiliation:

1. University of Toyama

Abstract

An exact solution of an initial value problem for the Susceptible–Exposed–Infectious–Recovered–Deceased (SEIRD) epidemic model is derived, and various properties of the exact solution are obtained. It is shown that the parametric form of the exact solution satisfies some linear differential system including a positive solution of an Abel differential equation of the second kind. In this paper Abel differential equations play an important role in establishing the exact solution of the SEIRD differential system, in particular the number of infected individuals can be represented in a simple form by using a positive solution of an initial value problem for an Abel differential equation. Uniqueness of positive solutions of an initial value problem to SEIRD differential system is also investigated, and it is shown that the exact solution is a unique solution in the class of positive solutions.

Publisher

University of Szeged

Reference20 articles.

1. N. H. Abel, Sur l'equation differentielle $(y+s)dy + (p+qy+ry^2)dx=0$, in: S. Lie, L. Sylow, Eds., uvres compl`etes de Niels Henrik Abel, Johnson Reprint Corporation, New York, 1965, Vol 2, 26--35.

2. D. Bernoulli, Essai d'une nouvelle analyse de la mortalite causee par la petite verole et des avantages de l'inoculation pour la prevenir, Mem. Math. Phys. Acad. Roy. Sci. (1760), 1--45.

3. Exact solution to a dynamic SIR model

4. Mathematical Epidemiology

5. Mathematical Structures of Epidemic Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3