Understanding the bacteria in Mycobacterium avium complex (MAC) from a bioinformatic perspective – a review

Author:

Banerjee Anindita1,Karmakar Mistu1,Sur Saubashya1ORCID

Affiliation:

1. Bankura University

Abstract

Mycobacterium avium complex (MAC) houses a group of non-tuberculous mycobacteria causing pulmonary and disseminated infections. They are accountable for nodular bronchiectatic and fibrocavitary lung diseases in humans, Johne’s disease in ruminants, and respiratory diseases in birds. MAC infections pose challenges, owing to antibiotic resistance, prolonged therapy with antibiotic combinations, side effects, and risk of reinfections. Our objective was to summarize the outcome of computational research on the bacteria in MAC. This aimed to advance our understanding of characteristics, pathogenicity, and transmission dynamics to control infections. We incorporated information from the research on genomes, microbiomes, phylogeny, transcriptomes, proteomes, antibiotic resistance, and vaccine/drug target development to enhance our knowledge. It illuminated the significance of computational studies in distinguishing MAC species/subspecies and recognizing: virulence factors, lineage-specific markers, and transmission clusters. Moreover, it assisted in understanding: genomic diversity, resistance patterns, impact of polymorphisms in disease susceptibility, and taxa-induced dysbiosis in microbiomes. Additionally, this work highlighted the outcome of bioinformatic studies in predicting suitable vaccine epitopes, and novel drug targets to combat MAC infections. Bioinformatic research on bacteria within MAC has contributed to a deeper insight into the pathogens. These would facilitate better diagnosis, improved: therapeutic strategies, patient-specific surveillance, and community-level awareness.

Funder

Department of Higher Education, Government of West Bengal

Publisher

University of Szeged

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3