Abstract
We consider the class of real-valued stochastic processes indexed on a compact subset of R or R2 with almost surely absolutely continuous sample paths. We obtain an implicit formula for the distributions of their maxima. The main result is the derivation of numerical bounds that turn out to be very accurate, in the Gaussian case, for levels that are not large. We also present the first explicit upper bound for the distribution tail of the maximum in the two-dimensional Gaussian framework. Numerical comparisons are performed with known tools such as the Rice upper bound and expansions based on the Euler characteristic. We deal numerically with the determination of the persistence exponent.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献