Abstract
For random variables with values on binary metric trees, the definition of the expected value can be generalized to the notion of a barycenter. To estimate the barycenter from tree-valued data, the so-called inductive mean is constructed recursively using the weighted interpolation between the current mean and a new data point. We show the strong consistency of the inductive mean, but also that it, somewhat peculiarly, converges towards the true barycenter with different rates, and asymptotic distributions depending on the small variations of the underlying distribution.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献