Author:
Kolesnik Alexander D.,Orsingher Enzo
Abstract
We consider the planar random motion of a particle that moves with constant finite speed c and, at Poisson-distributed times, changes its direction θ with uniform law in [0, 2π). This model represents the natural two-dimensional counterpart of the well-known Goldstein–Kac telegraph process. For the particle's position (X(t), Y(t)), t > 0, we obtain the explicit conditional distribution when the number of changes of direction is fixed. From this, we derive the explicit probability law f(x, y, t) of (X(t), Y(t)) and show that the density p(x, y, t) of its absolutely continuous component is the fundamental solution to the planar wave equation with damping. We also show that, under the usual Kac condition on the velocity c and the intensity λ of the Poisson process, the density p tends to the transition density of planar Brownian motion. Some discussions concerning the probabilistic structure of wave diffusion with damping are presented and some applications of the model are sketched.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献