Author:
Abraham R.,Dhersin J. S.,Ycart B.
Abstract
A multitype urn scheme with random replacements is considered. Each time a ball is picked, another ball is added, and its type is chosen according to the transition probabilities of a reducible Markov chain. The vector of frequencies is shown to converge almost surely to a random element of the set of stationary measures of the Markov chain. Its probability distribution is characterized as the solution to a fixed point problem. It is proved to be Dirichlet in the particular case of a single transient state to which no return is possible. This is no longer the case, however, as soon as returns to transient states are allowed.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献