Abstract
The aim of this paper is to analyze a class of random processes which models the motion of a particle on the real line with random velocity and subject to the action of friction. The speed randomly changes when a Poissonian event occurs. We study the characteristic and moment generating functions of the position reached by the particle at time t > 0. We are able to derive the explicit probability distributions in a few cases. The moments are also widely analyzed. For the random motions having an explicit density law, further interesting probabilistic interpretations emerge if we consider randomly varying time. Essentially, we consider two different types of random time, namely Bessel and gamma times, which contain, as particular cases, some important probability distributions (e.g. Gaussian, exponential). For the random processes built by means of these compositions, we derive the probability distributions for a fixed number of Poisson events. Some remarks on possible extensions to random motions in higher spaces are proposed. We focus our attention on the persistent planar random motion.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献