Continued Fraction Analysis of the Duration of an Excursion in an M/M/∞ System

Author:

Guillemin Fabrice,Pinchon Didier

Abstract

We show in this paper how the Laplace transform θ* of the duration θ of an excursion by the occupation process {Λt} of an M/M/∞ system above a given threshold can be obtained by means of continued fraction analysis. The representation of θ* by a continued fraction is established and the [m−1/m] Padé approximants are computed by means of well known orthogonal polynomials, namely associated Charlier polynomials. It turns out that the continued fraction considered is an S fraction and as a consequence the Stieltjes transform of some spectral measure. Then, using classic asymptotic expansion properties of hypergeometric functions, the representation of the Laplace transform θ* by means of Kummer's function is obtained. This allows us to recover an earlier result obtained via complex analysis and the use of the strong Markov property satisfied by the occupation process {Λt}. The continued fraction representation enables us to further characterize the distribution of the random variable θ.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The minimal quasi-stationary distribution of the absorbed M/M/∞ queue;Latin American Journal of Probability and Mathematical Statistics;2024

2. Modelling user experience of adaptive streaming video over fixed capacity links;Performance Evaluation;2021-07

3. Computational methods for birth‐death processes;WIREs Computational Statistics;2018-01-02

4. Coupling bounds for approximating birth–death processes by truncation;Statistics & Probability Letters;2016-02

5. Estimation for General Birth-Death Processes;Journal of the American Statistical Association;2014-04-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3