Extracellular Proteins as Enterobacterial Thermometers

Author:

Rowbury Robin J.1

Affiliation:

1. University College London and Biology Department

Abstract

Biological thermometers are cellular components or structures which sense increasing temperatures, interaction of the thermometer and the thermal stress bringing about the switching-on of inducible responses, with gradually enhanced levels of response induction following gradually increasing temperatures. In enterobacteria, for studies of such thermometers, generally induction of heat shock protein (HSP) synthesis has been examined, with experimental studies aiming to establish (often indirectly) how the temperature changes which initiate HSP synthesis are sensed; numerous other processes and responses show graded induction as temperature is increased, and how the temperature changes which induce these are sensed is also of interest. Several classes of intracellular component and structure have been proposed as enterobacterial thermometers, with the ribosome and the DnaK chaperone being the most favoured, although for many of the proposed intracellular thermometers, most of the evidence for their functioning in this way is indirect. In contrast to the above, the studies reviewed here firmly establish that for four distinct stress responses, which are switched-on gradually as temperature increases, temperature changes are sensed by extracellular components (extracellular sensing components, ESCs) i.e. there is firm and direct evidence for the occurrence of extracellular thermometers. All four thermometers described here are proteins, which appear to be distinct and different from each other, and on sensing thermal stress are activated by it to four distinct extracellular induction components (EICs), which interact with receptors on the surface of organisms to induce the appropriate responses. It is predicted that many other temperature-induced processes, including the synthesis of HSPs, will be switched-on following the activation of similar extracellular thermometers by thermal stimuli.

Publisher

SAGE Publications

Subject

Multidisciplinary

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3