Properties of an acid-tolerant, persistent Cheddar cheese isolate, Lacticaseibacillus paracasei GCRL163

Author:

Shah Syed S1,Al-Naseri Ali1,Rouch Duncan2,Bowman John P1,Wilson Richard3,Baker Anthony L1,Britz Margaret L1ORCID

Affiliation:

1. Food Safety and Innovation Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart 7005, Australia

2. Clarendon Policy and Strategy Group, Melbourne 3000, Australia

3. Central Science Laboratory, University of Tasmania, Hobart 7005, Australia

Abstract

Abstract The distinctive flavours in hard cheeses are attributed largely to the activity of nonstarter lactic acid bacteria (NSLAB) which dominate the cheese matrix during maturation after lactose is consumed. Understanding how different strains of NSLAB survive, compete, and scavenge available nutrients is fundamental to selecting strains as potential adjunct starters which may influence product traits. Three Lacticaseibacillus paracasei isolates which dominated at different stages over 63-week maturation periods of Australian Cheddar cheeses had the same molecular biotype. They shared many phenotypic traits, including salt tolerance, optimum growth temperature, growth on N-acetylglucosamine and N-acetylgalactosamine plus delayed growth on D-ribose, carbon sources likely present in cheese due to bacterial autolysis. However, strains 124 and 163 (later named GCRL163) survived longer at low pH and grew on D-tagatose and D-mannitol, differentiating this phenotype from strain 122. When cultured on growth-limiting lactose (0.2%, wt/vol) in the presence of high concentrations of L-leucine and other amino acids, GCRL163 produced, and subsequently consumed lactate, forming acetic and formic acids, and demonstrated temporal accumulation of intermediates in pyruvate metabolism in long-term cultures. Strain GCRL163 grew in Tween 80-tryptone broths, a trait not shared by all L. casei-group dairy isolates screened in this study. Including citrate in this medium stimulated growth of GCRL163 above citrate alone, suggesting cometabolism of citrate and Tween 80. Proteomic analysis of cytosolic proteins indicated that growth in Tween 80 produced a higher stress state and increased relative abundance of three cell envelope proteinases (CEPs) (including PrtP and Dumpy), amongst over 230 differentially expressed proteins.

Funder

Dairy Australia

University of Tasmania

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3