Comparison of performances of different fungal laccases in delignification and detoxification of alkali-pretreated corncob for bioethanol production

Author:

Liu Shenglong123,Liu Huan123,Shen Chen123,Fang Wei123,Xiao Yazhong123,Fang Zemin1234

Affiliation:

1. School of Life Sciences, Anhui University, Hefei, Anhui 230601, China

2. Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China

3. Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China

4. Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China

Abstract

Abstract The performance of the alkaline fungal laccase PIE5 (pH 8.5) in the delignification and detoxification of alkali-pretreated corncob to produce bioethanol was evaluated and compared with that of the neutral counterpart (rLcc9, 6.5), with the acidic laccase rLacA (4.0) was used as an independent control. Treatment with the three laccases facilitated bioethanol production compared with their respective controls. The lignin contents of alkali-pretreated corncob reduced from 4.06%, 5.06%, and 7.80% to 3.44%, 3.95%, and 5.03%, after PIE5, rLcc9, and rLacA treatment, respectively. However, the performances of the laccases were in the order rLacA > rLcc9 > PIE5 in terms of decreasing total phenol concentration (0.18, 0.36, and 0.67 g/l), boosting ethanol concentration (8.02, 7.51, and 7.31 g/l), and volumetric ethanol productivity (1.34, 0.94, and 0.91 g/l hr), and shortening overall fermentation time. Our results would inform future attempts to improve laccases for ethanol production. Furthermore, based on our data and the fact that additional procedures, such as pH adjustment, are needed during neutral/alkaline fungal laccase treatment, we suggest acidic fungal laccases may be a better choice than neutral/alkaline fungal laccases in bioethanol production.

Funder

National Natural Science Foundation of China

Distinguished Young Scholars of Anhui Province

Key Research and Development Plan of Anhui Province

Anhui University

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3