Reflections on the absence of stomata on the gametophyte generation of extant land plants: a focus on poikilohydry

Author:

Duckett Jeffrey G1,Renzaglia Karen S2,Pressel Silvia1

Affiliation:

1. Natural History Museum , Cromwell Road, London SW7 5BD , United Kingdom

2. Department of Plant Biology, Southern Illinois University, Carbondale , United States

Abstract

Abstract The recent realization that bryophyte sporophytes are homoiohydric enabled the present analysis of morphological features specifically associated with poikilohydry. The only morphological feature absolutely diagnostic of poikilohydry is schizolytic intercellular spaces. In vascular plants these are gas-filled from the outset, but in bryophytes are liquid-filled initially. They remain in this condition in liverwort gametophytes but become gas-filled following stomatal opening in hornworts and mosses. These have fixed apertures and are completely unresponsive to environmental cues. Stomata in Devonian fossils may have had similarly fixed apertures. Unistratose lamellae, characteristic of moss and liverwort leaves and pteridophyte gametophytes, are optimal structures for reversible cell shrinkage and recovery accompanying de- and rehydration. In 1 M sucrose, gametophytic tissues and filmy fern leaves undergo shrinkage, whereas sporophyte cells plasmolyse. Under extreme desiccation, hydroids are the only bryophyte cells to undergo cavitation. Like bryophytes, desiccation-tolerant streptophyte algae undergo reversible cell shrinkages. Mucilage secretion is unimportant in bryophyte desiccation biology and developmental differences rule out homology between the mucilage clefts and stomata in hornworts and Blasiales. Elaborate placental walls in basal liverwort lineages and a stomatal toolkit in the capsule walls of Haplomitrium suggest that liverworts’ ancestors may have had more complex sporophytes than those in extant taxa.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3