Comparative Nutrigenomics Analysis of the Pig, Mouse and Human (P15-004-19)

Author:

Dawson Harry1,Chen Celine2,Wang Thomas2,Urban Joseph2

Affiliation:

1. USDA/ARS/Beltsville Human Nutrition Research Center

2. Agricultural Research Service, United States Department of Agriculture

Abstract

Abstract Objectives The seminal work of Miller and Ullrey examined the suitability of the pig as a model for human nutrition concluded “With the possible exception of nonhuman primates, it is apparent that the omnivorous pig is one of the best models for study of nutrition issues in the omnivorous human.” To date, a cross-species, large-scale analysis of genes related to nutrition and metabolism has not been reported. Our goal was to systematically review similarities and differences in nutrition-related physiology, and where different, to explore possible etiologies behind each phenomena using comparative genomics. Methods A broad literature and laboratory-based analysis was conducted comparing 1532 genes associated with porcine, murine, and human macro and micronutrient metabolism, including metalloproteins. Four questions were addressed. Are genes in specific pathways conserved? Are the genes/proteins structurally and functionally similar? Are the genes expressed in similar cell types? Are the genes regulated in a similar manner to stimuli? Results Pigs have roughly 4-fold fewer unique genes (66) than the mouse (240) and human (209). The great majority of these unique genes were zinc-containing members of the KRAB-A box Transcription Factor Superfamily. Analysis of 142 non-orthologous genes revealed that these genes were 10 times more likely to be present in only pigs and humans (120) than only in mice and humans (17). Genes involved in vitamin A and lipid metabolism were more highly conserved between pigs and humans. Notable, differences were found between humans and pigs in regard to genes encoding digestive enzymes and nutrient sensing genes. In some cases, mechanistic data were obtained to explain for previously described differences in physiology. For example, the lack of porcine salivary lipase and amylase activities is likely related to the absence of these genes in the pig. Analysis of 888 orthologous genes indicated a greater pig-human protein similarity for almost every gene examined. Conclusions Overall, the genomic and physiological parameters examined were more similar between pigs and humans than mice and humans. This supports the proposition that evaluating nutrition in pigs provides data that is more physiologically relevant to humans. Funding Sources Supported by USDA/ARS Project Plan 1235-51,000-055-00D.

Publisher

Oxford University Press (OUP)

Subject

Nutrition and Dietetics,Food Science,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3