Characterization of extrasolar giant planets with machine learning

Author:

Li Jiayin12ORCID,Kaltenegger Lisa23ORCID,Pham Dang24ORCID,Ruppert David125ORCID

Affiliation:

1. Department of Statistics and Data Science, Cornell University , 1198 Comstock Hall, Ithaca, NY 14853 , USA

2. Carl Sagan Institute, Cornell University , 302 Space Sciences Building, Ithaca, NY 14853 , USA

3. Astronomy Department, Cornell University , 302 Space Sciences Building, Ithaca, NY 14853 , USA

4. David A. Dunlap Department of Astronomy & Astrophysics, University of Toronto , 50 St. George Street, Toronto, ON M5S 3H4 , Canada

5. School of Operations Research and Information Engineering, Cornell University , 238 Rhodes Hall, Ithaca, NY 14853 , USA

Abstract

ABSTRACT More than 5000 extrasolar planets have already been detected. JWST and near-term ground-based telescopes like the Extremely Large Telescope (ELT), Giant Magellan Telescope (GMT), Thirty Meter Telescope (TMT), and upcoming telescopes such as the Nancy Grace Roman Space Telescope, Xuntian, and Ariel are designed to characterize the atmosphere of directly imaged Jovian planets. Here, we used five diverse machine learning algorithms to investigate how well broad-band filter photometric fluxes could initially characterize giant exoplanets. We use an established grid of 8813 reflected light model spectra of different metallicities, planet–star distances, and cloud properties to assess the performance of several machine learning algorithms on both noiseless and noisy data to provide classification and regression results as a function of signal to noise of the data. In all cases, the algorithms were tested on noisy validation data. The results show that the use of machine learning to characterize giant planets from reflected broad-band filter photometry provides a promising tool for initial characterization, with over 65 per cent accuracy in characterizing metallicity for signal-to-noise ratios (S/N) ≳ 30, over 80 per cent for cloud coverage for S/N ≳ 30. This approach will allow initial characterization for large surveys of giant exoplanets and prioritization for spectroscopy observations of a subset of these worlds.

Funder

Brinson Foundation

Cornell University

NSF

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3