Affiliation:
1. Max Planck Institute for Astrophysics , Karl-Schwarzschild-Strasse 1, D-85740 Garching, Germany
Abstract
ABSTRACT
I present an analytic model for the early post-collapse evolution of a spherical density peak on the coherence scale of the initial fluctuations in a universe filled with collisionless and pressure-free ‘dust’. On a time-scale which is short compared to the peak’s collapse time t0, its inner regions settle into an equilibrium cusp with a power-law density profile, ρ ∝ r−12/7. Within this cusp, the circular orbit period P at each radius is related to the enclosed mass M by P = t0(M/Mc)2/3 where Mc is a suitably defined characteristic mass for the initial peak. The relaxation mechanism which produces this cusp gives insight into those which are active in high-resolution simulations of first halo formation in cold or warm dark matter universes, and, indeed, a simple argument suggests that the same power-law index γ = −12/7 should describe the prompt cusps formed during the collapse of generic peaks, independent of any symmetry assumption. Further work is needed to investigate the additional factors required to explain the slightly flatter exponent, γ ≈ −1.5, found in high-resolution numerical simulations of peak collapse.
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献