A Two-Scale Analysis for a Spherical Pendulum with a Vertically Vibrating Pivot

Author:

Grundy R E1

Affiliation:

1. School of Mathematics and Statistics, University of St Andrews, St Andrews, UK

Abstract

Summary In this article, we consider the behaviour of a simple undamped spherical pendulum subject to high-frequency small amplitude vertical oscillations of its pivot. We use the method of multiple scales to derive an autonomous ordinary differential equation describing the slow time behaviour of the polar angle which generalises the Kapitza equation for the plane problem. We analyse the phase plane structure of this equation and show that for a range of parameter values there are conical orbits which lie entirely above the horizontal. Going further, we identify a family of quasi-conical orbits some of which may lie entirely above the pivot and establish that initial conditions can be chosen so that precession is eliminated for these orbits. For the general initial value problem, we show that the leading order solutions for the polar and azimuthal angles diverge significantly from their exact counterparts. However, by consolidating the slow scale error term into the leading order structure we may construct extremely accurate solutions for the slow scale evolution of the system. These solutions, confirmed by exact numerical simulations, show that by suitable choice of initial data orbital precession can be eliminated.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference15 articles.

1. On a new type of dynamic stability;Stephenson;Mem. Proc. Manch. Lit. Philos. Soc.,1908

2. On an induced stability;Stephenson;Philos. Mag.,1908

3. On an induced stability;Stephenson;Philos. Mag.,1909

4. Vibrational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The behaviour of a forced spherical pendulum operating in a weightless environment;Quarterly Journal of Mechanics and Applied Mathematics;2023-08-01

2. The Spherical Kapitza – Whitney Pendulum;Regular and Chaotic Dynamics;2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3