Bayesian joint modeling of multivariate longitudinal and survival outcomes using Gaussian copulas

Author:

Cho Seoyoon1ORCID,Psioda Matthew A2ORCID,Ibrahim Joseph G1

Affiliation:

1. Department of Biostatistics, University of North Carolina, McGavran-Greenberg Hall , CB#7420, Chapel Hill , NC 27599, United States

2. Statistics and Data Science Innovation Hub, GlaxoSmithKline , Philadelphia, PA 19426, United States

Abstract

Abstract There is an increasing interest in the use of joint models for the analysis of longitudinal and survival data. While random effects models have been extensively studied, these models can be hard to implement and the fixed effect regression parameters must be interpreted conditional on the random effects. Copulas provide a useful alternative framework for joint modeling. One advantage of using copulas is that practitioners can directly specify marginal models for the outcomes of interest. We develop a joint model using a Gaussian copula to characterize the association between multivariate longitudinal and survival outcomes. Rather than using an unstructured correlation matrix in the copula model to characterize dependence structure as is common, we propose a novel decomposition that allows practitioners to impose structure (e.g., auto-regressive) which provides efficiency gains in small to moderate sample sizes and reduces computational complexity. We develop a Markov chain Monte Carlo model fitting procedure for estimation. We illustrate the method’s value using a simulation study and present a real data analysis of longitudinal quality of life and disease-free survival data from an International Breast Cancer Study Group trial.

Publisher

Oxford University Press (OUP)

Reference36 articles.

1. A Bayesian semiparametric joint hierarchical model for longitudinal and survival data;Brown;Biometrics,2003

2. A flexible B-spline model for multiple longitudinal biomarkers and survival;Brown;Biometrics.,2005

3. A new joint model for longitudinal and survival data with a cure fraction;Chen;Spec Issue Semiparametr Nonparametr Mixed Models,2004

4. Beware of the hazards: limitations of the proportional hazards assumption;Cheung;EP Europace.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3