A method for identifying and segmenting branches of Scots pine (Pinus sylvestris L.) trees using terrestrial laser scanning

Author:

Yrttimaa Tuomas12ORCID,Kankare Ville1,Luoma Ville2,Junttila Samuli1,Saarinen Ninni1,Calders Kim3,Holopainen Markus2,Hyyppä Juha4,Vastaranta Mikko1

Affiliation:

1. School of Forest Sciences, University of Eastern Finland , Joensuu 80101 , Finland

2. Department of Forest Sciences, University of Helsinki , Helsinki 00790 , Finland

3. Department of Environment, Ghent University , Ghent 9000 , Belgium

4. Department of Photogrammetry and Remote Sensing, Finnish Geospatial Research Institute, National Land Survey of Finland , Espoo 02150 , Finland

Abstract

Abstract Terrestrial laser scanning (TLS) has been adopted as a feasible technique to characterize tree stems while the characterization of trees’ branching architecture has remained less explored. In general, branching architecture refers to the spatial arrangement of branches and their characteristics that are important when exploring the eco-physiological functioning of trees or assessing tree biomass and wood quality. Our aim was to develop a point cloud processing method for identifying and segmenting individual branches from TLS point clouds. We applied a Cartesian-to-cylinder coordinate transformation and a simple morphological filtering for stem surface reconstruction and stem-branch separation. Then branch origins were identified as their intersections with the stem surface, and individual branches were segmented based on their connectivity with the branch origins. The method, implemented in MATLAB and openly available, was validated on a 0.4-ha mature and managed southern boreal forest stand. The branch identification performance was assessed based on visual interpretation of 364 randomly sampled stem sections from 100 Scots pine (Pinus sylvestris (L.)) trees that were inspected for branch identification accuracy. The results showed that the branches could only be identified up to the height where the stem could be reconstructed. For 90% of the trees, this threshold ranged between 59.3% and 81.2% relative tree heights. Branches located below this threshold were identified with a recall of 75%, a precision of 92%, and an F1-score of 0.82. Based on our study, it appears that in a managed Scots pine stand, most of the branches can be identified with the developed method for the most valuable stem part eligible for logwood. The findings obtained in this study promote the feasibility of using TLS in applications requiring detailed characterization of trees. The developed method can be further used in quantifying the characteristics of individual branches, which could be useful for biomass and wood quality assessment, for example.

Funder

Research Council of Finland and European Union

Publisher

Oxford University Press (OUP)

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3