RESISTANCE TO PHYTOPHTHORA1 promotes cytochrome b559 formation during early photosystem II biogenesis in Arabidopsis

Author:

Che Li-Ping1ORCID,Ruan Junxiang1ORCID,Xin Qiang1ORCID,Zhang Lin1ORCID,Gao Fudan1ORCID,Cai Lujuan1ORCID,Zhang Jianing2ORCID,Chen Shiwei1ORCID,Zhang Hui1ORCID,Rochaix Jean-David3ORCID,Peng Lianwei1ORCID

Affiliation:

1. Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University , Shanghai 200234 , China

2. Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University , Shanghai 200234 , China

3. Department of Molecular Biology and Plant Biology, University of Geneva , Geneva 1211 , Switzerland

Abstract

Abstract As an essential intrinsic component of photosystem II (PSII) in all oxygenic photosynthetic organisms, heme-bridged heterodimer cytochrome b559 (Cyt b559) plays critical roles in the protection and assembly of PSII. However, the underlying mechanisms of Cyt b559 assembly are largely unclear. Here, we characterized the Arabidopsis (Arabidopsis thaliana) rph1 (resistance to Phytophthora1) mutant, which was previously shown to be susceptible to the oomycete pathogen Phytophthora brassicae. Loss of RPH1 leads to a drastic reduction in PSII accumulation, which can be primarily attributed to the defective formation of Cyt b559. Spectroscopic analyses showed that the heme level in PSII supercomplexes isolated from rph1 is significantly reduced, suggesting that RPH1 facilitates proper heme assembly in Cyt b559. Due to the loss of RPH1-mediated processes, a covalently bound PsbE–PsbF heterodimer is formed during the biogenesis of PSII. In addition, rph1 is highly photosensitive and accumulates elevated levels of reactive oxygen species under photoinhibitory-light conditions. RPH1 is a conserved intrinsic thylakoid protein present in green algae and terrestrial plants, but absent in Synechocystis, and it directly interacts with the subunits of Cyt b559. Thus, our data demonstrate that RPH1 represents a chloroplast acquisition specifically promoting the efficient assembly of Cyt b559, probably by mediating proper heme insertion into the apo-Cyt b559 during the initial phase of PSII biogenesis.

Funder

National Key R&D Program of China

Shanghai Engineering Research Center of Plant Germplasm Resources

Publisher

Oxford University Press (OUP)

Reference81 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3