The START domain potentiates HD-ZIPIII transcriptional activity

Author:

Husbands Aman Y12ORCID,Feller Antje3ORCID,Aggarwal Vasudha4ORCID,Dresden Courtney E25ORCID,Holub Ashton S6ORCID,Ha Taekjip47ORCID,Timmermans Marja C P13ORCID

Affiliation:

1. Cold Spring Harbor Laboratory , 1 Bungtown Road, Cold Spring Harbor, NY 11724 , USA

2. Department of Biology, University of Pennsylvania , 415 S. University Ave, Philadelphia, PA 19104 , USA

3. Center for Plant Molecular Biology, University of Tübingen , Auf der Morgenstelle 32, 72076 Tübingen , Germany

4. Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine , Baltimore, MD 21205 , USA

5. Molecular, Cellular, and Developmental Biology (MCDB), The Ohio State University , Columbus, OH 43215 , USA

6. Department of Molecular Genetics, The Ohio State University , Columbus, OH 43215 , USA

7. Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Howard Hughes Medical Institute , Baltimore, MD 21205 , USA

Abstract

Abstract The CLASS III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIPIII) transcription factors (TFs) were repeatedly deployed over 725 million years of evolution to regulate central developmental innovations. The START domain of this pivotal class of developmental regulators was recognized over 20 years ago, but its putative ligands and functional contributions remain unknown. Here, we demonstrate that the START domain promotes HD-ZIPIII TF homodimerization and increases transcriptional potency. Effects on transcriptional output can be ported onto heterologous TFs, consistent with principles of evolution via domain capture. We also show the START domain binds several species of phospholipids, and that mutations in conserved residues perturbing ligand binding and/or its downstream conformational readout abolish HD-ZIPIII DNA-binding competence. Our data present a model in which the START domain potentiates transcriptional activity and uses ligand-induced conformational change to render HD-ZIPIII dimers competent to bind DNA. These findings resolve a long-standing mystery in plant development and highlight the flexible and diverse regulatory potential coded within this widely distributed evolutionary module.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

Reference73 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3