A data-driven approach to studying changing vocabularies in historical newspaper collections

Author:

Hengchen Simon1ORCID,Ros Ruben2ORCID,Marjanen JaniORCID,Tolonen Mikko3ORCID

Affiliation:

1. Språkbanken Text, University of Gothenburg, Sweden and iguanodon.ai, Belgium

2. Centre for Contemporary and Digital History (C2DH), University of Luxembourg, Luxembourg

3. Helsinki Computational History Group, University of Helsinki, Finland

Abstract

Abstract Nation and nationhood are among the most frequently studied concepts in the field of intellectual history. At the same time, the word ‘nation’ and its historical usage are very vague. The aim in this article was to develop a data-driven method using dependency parsing and neural word embeddings to clarify some of the vagueness in the evolution of this concept. To this end, we propose the following two-step method. First, using linguistic processing, we create a large set of words pertaining to the topic of nation. Second, we train diachronic word embeddings and use them to quantify the strength of the semantic similarity between these words and thereby create meaningful clusters, which are then aligned diachronically. To illustrate the robustness of the study across languages, time spans, as well as large datasets, we apply it to the entirety of five historical newspaper archives in Dutch, Swedish, Finnish, and English. To our knowledge, thus far there have been no large-scale comparative studies of this kind that purport to grasp long-term developments in as many as four different languages in a data-driven way. A particular strength of the method we describe in this article is that, by design, it is not limited to the study of nationhood, but rather expands beyond it to other research questions and is reusable in different contexts.

Funder

European Union’s Horizon 2020

CSC—IT Center for Science Ltd.

Computational Lexical Semantic Change Detection

Swedish Research Council

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Linguistics and Language,Language and Linguistics,Information Systems

Reference108 articles.

1. Evaluating the stability of embedding-based word similarities;Antoniak;Transactions of the Association for Computational Linguistics,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3