Nitrogen and phosphorus translocation of forest floor mosses as affected by a pulse of these nutrients

Author:

Liu Xin12ORCID,Wang Zhe23ORCID,Li Xiaoming2,Bao Weikai2

Affiliation:

1. Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China

2. Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China

3. College of Life Sciences, Shanghai Normal University, Shanghai, China

Abstract

AbstractAimsMosses are dominant in many ecosystems where nutrients from deposition are one of the main nutrient sources. However, it is difficult to evaluate mosses’ role in nutrient cycling without knowledge of how mosses use deposited nutrient inputs. To fill this gap, the present study aims to investigate: (i) how nitrogen (N) and phosphorus (P) concentrations of new-grown segments change along a gradient of N or P amount in a pulse treatment? (ii) how do a pulse of major nutrient (N or P) affect N or P translocation rate along a moss shoot? and (iii) to what extent do N or P translocation rates link to nutrient status of the new-grown segments of mosses?MethodsWe measured N and P concentrations of segments with different ages in two dominant forest floor mosses, Actinothuidium hookeri and Hylocomium splendens, on 8 days and 1 year after N and P pulse treatment with an in situ experiment in a subalpine fir forest in eastern Tibetan Plateau.Important FindingsBoth mosses were efficient in taking up nutrients from a pulse of either N or P. Nitrogen and P concentrations of new-grown segments were affected by nutrient pulse treatments. These N and P concentration changes were attributed to the initial N and P concentration of the young segments harvested 8 days after nutrient pulse treatments, suggesting that the captured nutrients were reallocated to the new-grown segments via translocation, which was largely controlled by a source–sink relationship. While no significant relationship was found between N translocation rate and N:P ratio of the new-grown segments, P translocation rate explained 21%–23% of the variance of N:P ratio of the new-grown segments, implying importance of P transport in supporting the new-grown sections. These results suggest that nutrient (N, P) translocation is a key process for mosses to utilize intermittent nutrient supply, and thus make mosses an important nutrient pool of the ecosystem.

Funder

National Natural Science Foundation of China

Ecological Security and Protection Key Laboratory of Sichuan Province

National Science and Technology Major Project of Sichuan Province

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3