Shadow glass transition as a thermodynamic signature of β relaxation in hyper-quenched metallic glasses

Author:

Yang Qun1,Peng Si-Xu1,Wang Zheng2ORCID,Yu Hai-Bin1ORCID

Affiliation:

1. Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China

2. Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China

Abstract

Abstract One puzzling phenomenon in glass physics is the so-called ‘shadow glass transition’ which is an anomalous heat-absorbing process below the real glass transition and influences glass properties. However, it has yet to be entirely characterized, let alone fundamentally understood. Conventional calorimetry detects it in limited heating rates. Here, with the chip-based fast scanning calorimetry, we study the dynamics of the shadow glass transition over four orders of magnitude in heating rates for 24 different hyper-quenched metallic glasses. We present evidence that the shadow glass transition correlates with the secondary (β) relaxation: (i) The shadow glass transition and the β relaxation follow the same temperature–time dependence, and both merge with the primary relaxation at high temperature. (ii) The shadow glass transition is more obvious in glasses with pronounced β relaxation, and vice versa; their magnitudes are proportional to each other. Our findings suggest that the shadow glass transition signals the thermodynamics of β relaxation in hyper-quenched metallic glasses.

Funder

National Thousand Young Talents Program of China

Fundamental Research Funds for the Central Universities

Taishan Scholars Program of Shandong Province

National Natural Science Foundation of China

Key Basic and Applied Research Program of Guangdong Province

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3