Investigating the seismic structure and visibility of dynamic plume models with seismic array methods

Author:

Stockmann Fabienne1,Cobden Laura2ORCID,Deschamps Frédéric3,Fichtner Andreas4,Thomas Christine1

Affiliation:

1. Institut für Geophysik, Westfälische Wilhelms-Universität Münster, Münster, Germany

2. Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands

3. Institute of Earth Sciences, Academia Sinica, Taipei City, Taiwan

4. Department of Earth Sciences, ETH Zürich, Zurich, Switzerland

Abstract

SUMMARY Mantle plumes may play a major role in the transport of heat and mass through the Earth, but establishing their existence and structure using seismology has proven challenging and controversial. Previous studies have mainly focused on imaging plumes using waveform modelling and inversion (i.e. tomography). In this study we investigate the potential visibility of mantle plumes using array methods, and in particular whether we can detect seismic scattering from the plumes. By combining geodynamic modelling with mineral physics data we compute ‘seismic’ plumes whose shape and structure correspond to dynamically plausible thermochemical plumes. We use these seismic models to perform a full-waveform simulation, sending seismic waves through the plumes, in order to generate synthetic seismograms. Using velocity spectral analysis and slowness-backazimuth plots, we are unable to detect scattering. However at longer dominant periods (25 s) we see several arrivals from outside the plane of the great circle path, that are consistent with an apparent bending of the wave front around the plume conduit. At shorter periods (15 s), these arrivals are less obvious and less strong, consistent with the expected changes in the waves' behaviour at higher frequencies. We also detect reflections off the iron-rich chemical pile which serves as the plume source in the D″ region, indicating that D″ reflections may not always be due to a phase transformation. We suggest that slowness-backazimuth analysis may be a useful tool to locate mantle plumes in real array data sets. However, it is important to analyse the data at different dominant periods since, depending on the width of the plume, there is probably an optimum frequency band at which the plume is most visible. Our results also show the importance of studying the incoming energy in all directions, so that any apparently out-of-plane arrivals can be correctly interpreted.

Funder

Netherlands Organisation for Scientific Research

European Research Council

Seventh Framework Programme

Ministry of Science and Technology of Taiwan

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wavefield distortion imaging of Earth's deep mantle;Earth and Planetary Science Letters;2023-02

2. A naive Bayesian method to chase mantle plumes in global tomography models;Geophysical Journal International;2022-10-21

3. Kinetic effects on the 660-km-phase transition in mantle upstreams and seismological implications;Geophysical Journal International;2022-05-31

4. Detection and modelling of strong topography of mid-mantle structures beneath the North Atlantic;Geophysical Journal International;2021-11-17

5. Seismic Imaging of Deep Mantle Plumes;Mantle Convection and Surface Expressions;2021-06-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3