Global mantle structure from multifrequency tomography using P, PP and P-diffracted waves

Author:

Hosseini Kasra12ORCID,Sigloch Karin1,Tsekhmistrenko Maria13,Zaheri Afsaneh1,Nissen-Meyer Tarje1,Igel Heiner4

Affiliation:

1. Dept. of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK

2. The Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, UK

3. Geophysics Section, School of Cosmic Physics, Dublin Institute for Advanced Studies, Dublin, Ireland

4. Dept. of Earth Sciences, Ludwig-Maximilians-Universität München, Theresienstrasse 41, 80333 Munich, Germany

Abstract

SUMMARY In global-scale seismic tomography, teleseismic P and PP waves mainly constrain structures in the upper two thirds of the mantle, whereas core-diffracted waves (Pdiff) constrain the lower third. This study is the first to invert a very large data set of Pdiff waves, up to the highest possible frequencies. This results in tomographic resolution matching and exceeding that of global S-wave tomographies, which have long been the models of choice for interpreting lowermost mantle structure. We present three new global tomography models of 3-D isotropic P-wave velocity in the earth’s mantle. Multifrequency cross-correlation traveltimes are measured on all phases in passbands from 30 s dominant period to the highest frequencies that produce satisfactory fits (≈3 s). Model DETOX-P1 fits ≈2.5 M traveltimes from teleseismic P waves. DETOX-P2 fits the same data, plus novel measurements of ≈1.4 M traveltimes of Pdiff waves. DETOX-P3 fits the same data as DETOX-P2, plus ≈ 1.2 M PP traveltimes. Synthetics up to 1 s dominant period are computed by full wave propagation in a spherically symmetric earth using the spectral-element method AxiSEM. Traveltimes are linked to 3-D velocity perturbations (dVP/VP) by finite-frequency Fréchet kernels, parametrized on an adaptive tetrahedral grid of ≈400 000 vertices spaced by ≈80 km in the best-sampled regions. To complete spatial coverage, the waveform cross-correlation measurements are augmented by ≈5.7 million analyst-picked, teleseismic P arrival times. P, Pdiff and PP traveltimes are jointly inverted for 3-D isotropic P-velocity anomalies in the mantle and for events corrections, by least squares solution of an explicit matrix–vector equation. Inclusion of Pdiff traveltimes (in DETOX-P2, -P3) improves the spatial sampling of the lowermost mantle 100- to 1000-fold compared to teleseismic P waves (DETOX-P1). Below ≈2400 km depth, seismically slow anomalies are clustered at southern and equatorial latitudes, in a dozen or more intensely slow patches of 600–1400 km diameter. These features had long been classed into two large low shear velocity provinces (LLVP), which now appears questionable. Instead, patches of intensely slow anomalies in the lowermost mantle seem to form a nearly continuous, globe-spanning chain beneath the southern hemisphere, according to our increased resolution of LLVP-internal subdivisions and newly imaged patches beneath South America. Our tomography also supports the existence of whole-mantle plumes beneath Iceland, Ascension, Afar, Kerguelen, Canary, Azores, Easter, Galapagos, Hawaii, French Polynesia and the Marquesas. Seismically fast structure in the lowermost mantle is imaged as narrowly elongated belts under Eastern Asia and the Americas, presumably reflecting the palaeo-trench geometries of subduction zones and arcs that assembled Eastern Asia and the American Cordilleras in Palaeozoic and early Mesozoic times. Mid-mantle structure is primarily constrained by teleseismic P waves, but Pdiff data have a stabilizing effect, for example, sharpening the geometries of subducted slabs under the Americas, Eurasia and the Northern Pacific in the upper 2000 km. PP traveltimes contribute complementary constraints in the upper and mid mantle, but they also introduce low-velocity artefacts beneath the oceans, through downward smearing of lithospheric structure. Our three new global P-wave models can be accessed and interactively visualized through the SubMachine web portal (http://submachine.earth.ox.ac.uk/).

Funder

European Research Council

Horizon 2020

National Eye Research Centre

University of Oxford

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference151 articles.

1. Global travel time tomography with 3-D reference models;Amaru;Geologica Ultraiectina,2007

2. Savani: a variable resolution whole-mantle model of anisotropic shear velocity variations based on multiple data sets;Auer;J. geophys. Res.: Solid Earth,2014

3. The quickhull algorithm for convex hulls;Barber;ACM Trans. Math. Softw.,1996

4. Investigating la réunion hot spot from crust to core;Barruol;EOS, Trans. Am. Geophys. Un.,2013

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3