Single-cell RNA sequencing reveals a high-resolution cell atlas of petals in Prunus mume at different flowering development stages

Author:

Guo Yuhong1,Chen Xiling1,Li Jinhong1,Wang Qi1,Zhang Shuangyu1,Liu Nuoxuan1,Zhang Yanlong1,Zhang Tengxun1

Affiliation:

1. Northwest A&F University College of Landscape Architecture and Arts, , Yangling, Shaanxi 712100, China

Abstract

Abstract Prunus mume (mei), a traditional ornamental plant in China, is renowned for its fragrant flowers, primarily emitted by its petals. However, the cell types of mei petals and where floral volatile synthesis occurs are rarely reported. The study used single-cell RNA sequencing to characterize the gene expression landscape in petals of P. mume ‘Fenhong Zhusha’ at budding stage (BS) and full-blooming stage (FS). Six major cell types of petals were identified: epidermal cells (ECs), parenchyma cells (PCs), xylem parenchyma cells, phloem parenchyma cells, xylem vessels and fibers, and sieve elements and companion cells complex. Cell-specific marker genes in each cell type were provided. Floral volatiles from mei petals were measured at four flowering development stages, and their emissions increased from BS to FS, and decreased at the withering stage. Fifty-eight differentially expressed genes (DEGs) in benzenoid/phenylpropanoid pathway were screened using bulk RNA-seq data. Twenty-eight DEGs expression increased from BS to FS, indicating that they might play roles in floral volatile synthesis in P. mume, among which PmBAHD3 would participate in benzyl acetate synthesis. ScRNA-seq data showed that 27 DEGs mentioned above were expressed variously in different cell types. In situ hybridization confirmed that PmPAL2, PmCAD1, PmBAHD3,5, and PmEGS1 involved in floral volatile synthesis in mei petals are mainly expressed in EC, PC, and most vascular tissues, consistent with scRNA-seq data. The result indicates that benzyl acetate and eugenol, the characteristic volatiles in mei, are mostly synthesized in these cell types. The first petal single-cell atlas was constructed, offering new insights into the molecular mechanism of floral volatile synthesis.

Funder

Chinese Universities Scientific Fund

Natural Science Basic Research Program of Shaanxi

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Reference41 articles.

1. Floral scent metabolic pathways: their regulation and evolution;Dudareva;Biol Floral Scent,2006

2. Biochemical and molecular genetic aspects of floral scents;Dudareva;Plant Physiol,2000

3. Evolution of floral scent in clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower;Dudareva;Plant Cell,1996

4. Cellular and subcellular localization of S-adenosyl-L-methionine: benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methylbenzoate in snapdragon flowers;Kolosova;Plant Physiol,2001

5. Role of petal-specific orcinol O-methyltransferases in the evolution of rose scent;Scalliet;Plant Physiol,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3