White-matter abnormalities and cognitive dysfunction are linked to astrocyte activation in sickle mice

Author:

Hazra Rimi1ORCID,Pu Hongjian2ORCID,Foley Lesley M3ORCID,Little-Ihrig Lynda1,Hitchens T Kevin3,Ghosh Samit1,Ofori-Acquah Solomon F1,Hu Xiaoming2ORCID,Novelli Enrico M1

Affiliation:

1. Department of Medicine, Pittsburgh Heart Lung and Blood Vascular Medicine Institute, University of Pittsburgh , 200 Lothrop Street, Pittsburgh, PA 15261 , USA

2. Department of Neurology, University of Pittsburgh , 3471 Fifth Avenue, Pittsburgh, PA 15213 , USA

3. Animal Imaging Center, McGowan Institute of Regenerative Medicine, University of Pittsburgh , 450 Technology Drive, Pittsburgh, PA 15219 , USA

Abstract

Abstract White-matter injury in sickle-cell disease (SCD) includes silent cerebral infarction diagnosed by diffusion tensor imaging (DTI), a complication associated with cognitive dysfunction in children with SCD. The link between white-matter injury and cognitive dysfunction has not been fully elucidated. The goal of this study was to define whether cerebrovascular lesions and cognitive function in SCD are linked to neuroaxonal damage and astrocyte activation in humanized Townes’ SCD mice homozygous for human sickle hemoglobin S (SS) and control mice homozygous for human normal hemoglobin A (AA). Mice underwent MRI with DTI and cognitive testing, and histology sections from their brains were stained to assess microstructural tissue damage, neuroaxonal damage, and astrocyte activation. Fractional anisotropy, showing microstructural cerebrovascular abnormalities identified by DTI in the white matter, was significantly associated with neuronal demyelination in the SS mouse brain. SS mice had reduced learning and memory function with a significantly lower discrimination index compared with AA control mice in the novel object recognition tests. Neuroaxonal damage in the SS mice was synchronously correlated with impaired neurocognitive function and activation of astrocytes. The interplay between astrocyte function and neurons may modulate cognitive performance in SCD.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3