Single-crystal-like germanium thin films on large-area, compliant, light-weight, flexible, single-crystal-like substrates

Author:

Kim Kyunghoon1,Radhakrishnan Gokul12,Droopad Ravi3,Goyal Amit14

Affiliation:

1. Tapesolar Inc ., Knoxville, TN 37922, USA

2. Now at Skorpios Technologies, Inc ., Albuquerque, NM 87109, USA

3. Ingram School of Engineering, Texas State University , 310 W Woods St 2203, San Marcos, TX 78666, USA

4. Laboratory for Heteroepitaxial Growth of Functional Materials & Devices, Department of Chemical & Biological Engineering, State University of New York at Buffalo , 308 Furnas Hall, Buffalo, NY 14260, USA

Abstract

Abstract Germanium (Ge) films were heteroepitaxially grown on flexible, large-area, single-crystal-like metallic substrates. Multiple, heteroepitaxial, buffer layers of nanoscale dimensions were deposited on the triaxially textured, single-crystal-like, thermo-mechanically processed Ni–W alloy substrates. Ge films were deposited on a CeO2-terminated, heteroepitaxial buffer stack on the metallic substrate using electron beam evaporation. X-ray diffraction θ–2θ scans showed a very strong Ge (400) peak and the full width at half-maximum (FWHM) of the Ge (400) rocking curve was 0.93°. The Ge (111) ϕ-scan showed a FWHM value ∼4°. Based on the X-ray ω-scan, ϕ-scan and (111), (110), and (001) X-ray pole-figures, the Ge film deposited on the flexible, metallic substrate had a cube-on-cube heteroepitaxial relationship with the single-crystal-like metallic substrate. Reflection-high-energy-diffraction (RHEED) patterns from the Ge layer was streaky indicative of a smooth and essentially single-crystal-like Ge film. Cross-section TEM examination revealed a sharp interface between the Ge film and the topmost buffer layer, CeO2, with a low defect density. The CeO2 layer serves as a highly compliant layer that modulates its lattice parameter to attain excellent lattice-matching to the heteroepitaxial Ge layer. Ge films grown on these flexible metal substrates exhibited electron mobilities in the range of 175–250 cm2V–1s–1. Such single-crystal-like semiconductor films on low-cost, flexible, large-area, scalable, single-crystal-like metallic substrates could potentially enable high-performance electronic devices for a range of applications.

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3