A shrinkage-based criterion for evaluating resistance spot weldability of alloyed steels

Author:

Li Shuoshuo12,Wang Yanjun3,Hu Bin12,Tao Wu3,Yang Shanglu34,Luo Haiwen12ORCID

Affiliation:

1. State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing , Beijing 100083, China

2. Department of Ferrous Metallurgy, University of Science and Technology Beijing , Beijing 100083, China

3. Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences , Shanghai 201800, China

4. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences , Beijing 100049, China

Abstract

Abstract For many decades, several classical formulas on carbon equivalent (CE) have been widely used for evaluating the weldability of steels. Unfortunately, a single CE is impossible for various types of steels. In this study, the resistance spot weldability of medium-Mn steels was investigated. In particular, the influences of paint baking processes at different temperatures on the mechanical properties, fracture mode, and microstructure of weldment were studied. It was found that the paint baking above 170°C can change the tensile-shear failure of weldment from the undesired interfacial failure to the desired pull-out one, because the shrinkage of weldment during welding was compensated by the thermal expansion during the baking, leading to the “cold welding” realized for solid joining. Furthermore, a shrinkage-based criterion (∆l) was established for evaluating the weldability of greater range of alloyed steels more accurately and robustly than CE. The proposed criterion on measuring the weldability of high alloyed steels opens a promising path forward for designing a new generation of advanced high strength steels requiring good weldability.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3