Viscoelasticity enhances collective motion of bacteria

Author:

Liao Wentian1,Aranson Igor S1ORCID

Affiliation:

1. Department of Biomedical Engineering, Pennsylvania State University , University Park, PA 16802 , USA

Abstract

Abstract Bacteria form human and animal microbiota. They are the leading causes of many infections and constitute an important class of active matter. Concentrated bacterial suspensions exhibit large-scale turbulent-like locomotion and swarming. While the collective behavior of bacteria in Newtonian fluids is relatively well understood, many fundamental questions remain open for complex fluids. Here, we report on the collective bacterial motion in a representative biological non-Newtonian viscoelastic environment exemplified by mucus. Experiments are performed with synthetic porcine gastric mucus, natural cow cervical mucus, and a Newtonian-like polymer solution. We have found that an increase in mucin concentration and, correspondingly, an increase in the suspension’s elasticity monotonously increases the length scale of collective bacterial locomotion. On the contrary, this length remains practically unchanged in Newtonian polymer solution in a wide range of concentrations. The experimental observations are supported by computational modeling. Our results provide insight into how viscoelasticity affects the spatiotemporal organization of bacterial active matter. They also expand our understanding of bacterial colonization of mucosal surfaces and the onset of antibiotic resistance due to swarming.

Funder

NSF

Publisher

Oxford University Press (OUP)

Reference50 articles.

1. Interactions between the microbiota and pathogenic bacteria in the gut;Bäumler;Nature,2016

2. Bacterial active matter;Aranson;Rep Prog Phys,2022

3. The 2020 motile active matter roadmap;Gompper;J Phys Condens Matter,2020

4. Microswimming in viscoelastic fluids;Li;J Nonnewton Fluid Mech,2021

5. Living liquid crystals;Zhou;Proc Natl Acad Sci USA,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3