Negative expressions are shared more on Twitter for public figures than for ordinary users

Author:

Schöne Jonas P123ORCID,Garcia David456ORCID,Parkinson Brian1ORCID,Goldenberg Amit237ORCID

Affiliation:

1. Department of Experimental Psychology, University of Oxford , Oxford, Oxfordshire OX2 6NW, UK

2. Harvard Business School, Harvard University , Boston, Massachusetts 02163 , USA

3. Digital, Data and Design Institute at Harvard , Allston, Massachusetts 02134 , USA

4. Department of Politics and Public Administration, University of Konstanz , Konstanz, Baden-Württemberg 78464 , Germany

5. Department of Psychology, Harvard University, Cambridge , Massachusetts 02138 , USA

6. Department of Computer Science and Biomedical Engineering, Graz University of Technology , Graz, Styria 8010 , Austria

7. Complexity Science Hub Vienna, Vienna , Vienna 1080 , Austria

Abstract

Abstract Social media users tend to produce content that contains more positive than negative emotional language. However, negative emotional language is more likely to be shared. To understand why, research has thus far focused on psychological processes associated with tweets' content. In the current study, we investigate if the content producer influences the extent to which their negative content is shared. More specifically, we focus on a group of users that are central to the diffusion of content on social media—public figures. We found that an increase in negativity was associated with a stronger increase in sharing for public figures compared to ordinary users. This effect was explained by two user characteristics, the number of followers and thus the strength of ties and the proportion of political tweets. The results shed light on whose negativity is most viral, allowing future research to develop interventions aimed at mitigating overexposure to negative content.

Funder

Promotionsförderung der Studienstiftung des deutschen Volkes

Vienna Science and Technology Fund

Publisher

Oxford University Press (OUP)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3