Collective privacy recovery: Data-sharing coordination via decentralized artificial intelligence

Author:

Pournaras Evangelos1ORCID,Ballandies Mark Christopher2,Bennati Stefano2ORCID,Chen Chien-fei3

Affiliation:

1. School of Computing, University of Leeds , Leeds LS2 3JT , UK

2. Computational Social Science, ETH Zurich , Zurich 8092 , Switzerland

3. Institute for a Secure and Sustainable Environment, University of Tennessee , Knoxville, TN 37996, USA

Abstract

Abstract Collective privacy loss becomes a colossal problem, an emergency for personal freedoms and democracy. But, are we prepared to handle personal data as scarce resource and collectively share data under the doctrine: as little as possible, as much as necessary? We hypothesize a significant privacy recovery if a population of individuals, the data collective, coordinates to share minimum data for running online services with the required quality. Here, we show how to automate and scale-up complex collective arrangements for privacy recovery using decentralized artificial intelligence. For this, we compare for the first time attitudinal, intrinsic, rewarded, and coordinated data sharing in a rigorous living-lab experiment of high realism involving >27,000 real data disclosures. Using causal inference and cluster analysis, we differentiate criteria predicting privacy and five key data-sharing behaviors. Strikingly, data-sharing coordination proves to be a win–win for all: remarkable privacy recovery for people with evident costs reduction for service providers.

Funder

UKRI

SNF NRP77

European Community’s H2020 Program

European Research Council

Swiss National Science Foundation

National Science Foundation

Department of Energy in the US

CURENT Industry Partnership Program

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. M-SET: Multi-Drone Swarm Intelligence Experimentation with Collision Avoidance Realism;2024 IEEE 49th Conference on Local Computer Networks (LCN);2024-10-08

2. Advancing Customer Feedback Systems with Blockchain;Business & Information Systems Engineering;2024-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3