Evaluation of predictive models to determine total morbidity outcome of feedlot cattle based on cohort-level feed delivery data during the first 15 days on feed

Author:

Heinen L1,Lancaster P A1,White B J1,Zwiefel E2

Affiliation:

1. Beef Cattle Institute, Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University , Manhattan, KS 66506 , USA

2. Machine Learning Global Black Belt Team, Microsoft Corporation , Edina, MN 55424 , USA

Abstract

Abstract Changes in feeding behavior and intake have been used to predict the onset of bovine respiratory disease in individual animals but have not been applied to cohort-level data. Correctly identifying high morbidity cohorts of cattle early in the feeding period could facilitate the administration of interventions to improve health and economic outcomes. The study objective was to determine the ability of feed delivery data from the first 15 days of feed to predict total feeding period morbidity. Data consisted of 518 cohorts (10 feedlots, 56,796 animals) of cattle of varying sex, age, arrival weight, and arrival time of year over a 2-year period. Overall cohort-level morbidity was classified into high (≥15% total morbidity) or low categories with 18.5% of cohorts having high morbidity. Five predictive models (advanced perceptron, decision forest, logistic regression, neural network, and boosted decision tree) were created to predict overall morbidity given cattle characteristics at arrival and feeding characteristics from the first 15 days. The dataset was split into training and testing subsets (75% and 25% of original, respectively), stratified by the outcome of interest. Predictive models were generated in Microsoft Azure using the training set and overall predictive performance was evaluated using the testing set. Performance in the testing set (n = 130) was measured based on final accuracy, sensitivity (Sn, the ability to accurately detect high morbidity cohorts), and specificity (Sp, the ability to accurately detect low morbidity cohorts). The decision forest had the highest Sp (97%) with the greatest ability to accurately identify low morbidity lots (103 of 106 identified correctly), but this model had low Sn (33%). The logistic regression and neural network had similar Sn (both 63%) and Sp (69% and 72%, respectively) with the best ability to correctly identify high morbidity cohorts (15 of 24 correctly identified). Predictor variables with the greatest importance in the predictive models included percent change in feed delivery between days and 4-day moving averages. The most frequent variable with a high level of importance among models was the percent change in feed delivered from d 2 to 3 after arrival. In conclusion, feed delivery data during the first 15 days on feed was a significant predictor of total cohort-level morbidity over the entire feeding period with changes in feed delivery providing important information.

Publisher

Oxford University Press (OUP)

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3