Schizachyrium scoparium (C4) better tolerates drought than Andropogon gerardii (C4) via constant CO2 supply for photosynthesis during water stress

Author:

Dekirmenjian Alina1,Montano Diego1,Budny Michelle L1,Lemoine Nathan P12

Affiliation:

1. Department of Biological Sciences, Marquette University , 1428 W Clybourn St, Milwaukee, WI 53233 USA

2. Department of Zoology, Milwaukee Public Museum , 800 W Wells St, Milwaukee, WI 53201 USA

Abstract

Abstract Abstract. Climate change is dramatically altering global precipitation patterns across terrestrial ecosystems, making it critically important that we understand both how and why plant species vary in their drought sensitivities. Andropogon gerardii and Schizachyrium scoparium, both C4 grasses, provide a model system for understanding the physiological mechanisms that determine how species of a single functional type can differ in drought responses, an issue remains a critical gap in our ability to model and predict the impacts of drought on grassland ecosystems. Despite its greater lability of foliar water content, previous experiments have demonstrated that S. scoparium maintains higher photosynthetic capacity during droughts. It is therefore likely that the ability of S. scoparium to withstand drought instead derives from a greater metabolic resistance to drought. Here, we tested the following hypotheses: (H1) A. gerardii is more vulnerable to drought than S. scoparium at both the population and organismal levels, (H2) A. gerardii is less stomatally flexible than S. scoparium, and (H3) A. gerardii is more metabolically limited than S. scoparium. Our results indicate that it is actually stomatal limitations of CO2 supply that limit A. gerardii photosynthesis during drought. Schizachyrium scoparium was more drought-resistant than A. gerardii based on long-term field data, organismal biomass production and physiological gas exchange measurements. While both S. scoparium and A. gerardii avoided metabolic limitation of photosynthesis, CO2 supply of A. gerardii was greatly reduced during late-stage drought stress. That two common, co-occurring C4 species possess such different responses to drought highlights the physiological variability inherent within plant functional groups and underscores the need for more studies of C4 drought tolerance.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3