Effects of three-dimensional soil heterogeneity and species composition on plant biomass and biomass allocation of grass-mixtures

Author:

Liu Yongjie1,Li Guoe1,Wang Mingxia1,Yan Wenjing1,Hou Fujiang1

Affiliation:

1. State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China

Abstract

Abstract Soil heterogeneity significantly affects plant dynamics such as plant growth and biomass. Most studies developed soil heterogeneity in two dimensions, i.e. either horizontally or vertically. However, soil heterogeneity in natural ecosystems varies both horizontally and vertically, i.e. in three dimensions. Previous studies on plant biomass and biomass allocation rarely considered the joint effects of soil heterogeneity and species composition. Thus, to investigate such joint effects on plant biomass and biomass allocation, a controlled experiment was conducted, where three levels of soil heterogeneity and seven types of species compositions were applied. Such soil heterogeneity was developed by filling nutrient-rich and nutrient-poor substrates in an alternative pattern in pots with different patch sizes (small, medium or large), and species compositions was achieved by applying three plant species (i.e. Festuca elata, Bromus inermis, Elymus breviaristatus) in all possible combinations (growing either in monoculture or in mixtures). Results showed that patch size significantly impacted plant biomass and biomass allocation, which differed among plant species. Specially, at the pot scale, with increasing patch size, shoot biomass decreased, while root biomass and R:S ratio increased, and total biomass tended to show a unimodal pattern, where the medium patch supported higher total biomass. Moreover, at the substrate scale, more shoot biomass and total biomass were found in nutrient-rich substrate. Furthermore, at the community scale, two of the three target plant species growing in monoculture had more shoot biomass than those growing together with other species. Thus, our results indicate soil heterogeneity significantly affected plant biomass and biomass allocation, which differ among plant species, though more research is needed on the generalization on biomass allocation. We propose that soil heterogeneity should be considered more explicitly in studies with more species in long-term experiments.

Funder

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3