Do marginal plant populations enhance the fitness of larger core units under ongoing climate change? Empirical insights from a rare carnation

Author:

Gargano Domenico12,Bernardo Liliana12,Rovito Simone1,Passalacqua Nicodemo G12,Abeli Thomas3

Affiliation:

1. Dipartimento di Biologia, Ecologia e Scienze della Terra dell’Università della Calabria , Via P. Bucci , I-87036 Arcavacata di Rende , Italy

2. Museo di Storia Naturale della Calabria ed Orto Botanico dell’Università della Calabria , loc. Polifunzionale , I-87036 Arcavacata di Rende , Italy

3. Department of Science, University of Roma Tre , Viale Guglielmo Marconi 446, 00146 Roma , Italy

Abstract

Abstract Assisted gene flow (AGF) can restore fitness in small plant populations. Due to climate change, current fitness patterns could vary in the future ecological scenario, as highly performant lineages can undergo maladaptation under the new climatic contexts. Peripheral populations have been argued to represent a potential source of species adaptation against climate change, but experimental evidence is poor. This paper considers the consequences of within- and between-population mating between a large core population and the southernmost population, the rare Dianthus guliae, to evaluate optimal AGF design under current and future conditions. We performed experimental self-pollinations and within- and between-population cross-pollinations to generate seed material and test its adaptive value to aridity. Seed germination, seedling growth and survival were measured under current and expected aridity. Effects of population type, pollination treatment and stress treatment on fitness components were analysed by generalized linear models. Relative measures of inbreeding depression and heterosis were taken under different stress treatments. Self-pollination reduced fitness for all the considered traits compared to within- and between-population cross-pollination. Under current aridity regime, the core population expressed higher fitness, and a larger magnitude of inbreeding depression. This indicated the core unit is close to its fitness optimum and could allow for restoring the fitness of the small peripheral population. Contrarily, under increased aridity, the fitness of outbred core lineages decreased, suggesting the rise of maladaptation. In this scenario, AGF from the small peripheral population enhanced the fitness of the core unit, whereas AGF from the core population promoted a fitness loss in the peripheral population. Hence, the small peripheral population could improve fitness of large core units versus climate change, while the contrary could be not true. Integrating reciprocal breeding programmes and fitness analyses under current and predicted ecological conditions can support optimal AGF design in a long-term perspective.

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3