Lilikoi V2.0: a deep learning–enabled, personalized pathway-based R package for diagnosis and prognosis predictions using metabolomics data

Author:

Fang Xinying1,Liu Yu2,Ren Zhijie3,Du Yuheng1,Huang Qianhui1,Garmire Lana X2ORCID

Affiliation:

1. Department of Biostatistics, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 49109, USA

2. Department of Computational Medicine and Bioinformatics, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48105, USA

3. Department of Electric Engineering and Computer Science, 2260 Hayward Street, University of Michigan, Ann Arbor, MI 48109, USA

Abstract

Abstract Background previously we developed Lilikoi, a personalized pathway-based method to classify diseases using metabolomics data. Given the new trends of computation in the metabolomics field, it is important to update Lilikoi software. Results here we report the next version of Lilikoi as a significant upgrade. The new Lilikoi v2.0 R package has implemented a deep learning method for classification, in addition to popular machine learning methods. It also has several new modules, including the most significant addition of prognosis prediction, implemented by Cox-proportional hazards model and the deep learning–based Cox-nnet model. Additionally, Lilikoi v2.0 supports data preprocessing, exploratory analysis, pathway visualization, and metabolite pathway regression. Conculsion Lilikoi v2.0 is a modern, comprehensive package to enable metabolomics analysis in R programming environment.

Funder

National Institute of Environmental Health Sciences

U.S. National Library of Medicine

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

Reference42 articles.

1. Navigating freely-available software tools for metabolomics analysis;Spicer;Metabolomics,2017

2. Lilikoi: an R package for personalized pathway-based classification modeling using metabolomics data;Al-Akwaa;Gigascience,2018

3. Deep learning-based multi-omics integration robustly predicts survival in liver cancer;Chaudhary;Clin Cancer Res,2018

4. Deep learning data integration for better risk stratification models of bladder cancer;Poirion;AMIA Jt Summits Transl Sci Proc,2018

5. Cox-nnet: an artificial neural network method for prognosis prediction of high-throughput omics data;Ching;PLoS Comput Biol,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3