Multi-omics analysis revealed the regulation mode of intratumor microorganisms and microbial signatures in gastrointestinal cancer

Author:

Wang Siqi12ORCID,Liu Pei12,Yu Jie12,Liu Tongxiang12ORCID

Affiliation:

1. School of Pharmacy, Minzu University of China , Beijing 100081 , China

2. Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China , Beijing 100081 , China

Abstract

Abstract Objective Gastrointestinal cancer is one of the most common malignant tumors in the world, and its incidence rate is always high. In recent years, research has shown that microorganisms may play a broad role in the diagnosis, pathogenesis, and treatment of cancer. Methods In this study, samples were first classified according to the microbial expression data of Gastrointestinal cancer, followed by functional enrichment and Immunoassay. In order to better understand the role of intratumor microorganisms in the prognosis, we screened gene signatures and constructed risk model through univariate cox and lasso regression and multivariable cox, then screened microbial signatures using zero-inflated model regression model and constructed risk index (RI), and finally predicted the immunotherapeutic effect of the risk model. Results The results indicate that the composition of tumor microorganisms in the C3 subtype is closely related to tumor angiogenesis, and there is a significant difference in the proportion of innate and acquired immune cells between the C2 and C1 subtypes, as well as differences in the physiological functions of immune cells. There are significant differences in the expression of microbial signatures between high and low risk subtypes, with 9 microbial signatures upregulated in high risk subtypes and 15 microbial signatures upregulated in low risk subtypes. These microbial signatures were significantly correlated with the prognosis of patients. The results of immunotherapy indicate that immunotherapy for high-risk subtypes is more effective. Conclusion Overall, we analyze from the perspective of microorganisms within tumors, pointing out new directions for the diagnosis and treatment of cancer.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3