In silico gepotidacin target mining among 33 213 global Neisseria gonorrhoeae genomes from 1928 to 2023 combined with gepotidacin MIC testing of 22 gonococcal isolates with different GyrA and ParC substitutions

Author:

David Alexandra1,Golparian Daniel2,Jacobsson Susanne2,Stratton Caleb3,Lan Pham Thi4,Shimuta Ken5,Sonnenberg Pam1,Field Nigel1,Ohnishi Makoto5,Davies Christopher3,Unemo Magnus12ORCID

Affiliation:

1. Institute for Global Health, Faculty of Population Health, University College London , London , UK

2. WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University , Örebro , Sweden

3. Department of Biochemistry and Molecular Biology, University of South Alabama , AL , USA

4. Hanoi Medical University, National Hospital of Dermatology and Venereology , Hanoi , Vietnam

5. Department of Bacteriology I, National Institute of Infectious Diseases , Tokyo , Japan

Abstract

Abstract Objectives The novel dual-target triazaacenaphthylene, gepotidacin, recently showed promising results in its Phase III randomized controlled trial for the treatment of gonorrhoea. We investigated alterations in the gepotidacin GyrA and ParC targets in gonococci by in silico mining of publicly available global genomes (n = 33 213) and determined gepotidacin MICs in isolates with GyrA A92 alterations combined with other GyrA and/or ParC alterations. Methods We examined gonococcal gyrA and parC alleles available at the European Nucleotide Archive. MICs were determined using the agar dilution method (gepotidacin) or Etest (four antimicrobials). Models of DNA gyrase and topoisomerase IV were obtained from AlphaFold and used to model gepotidacin in the binding site. Results GyrA A92 alterations were identified in 0.24% of genomes: GyrA A92P/S/V + S91F + D95Y/A/N (0.208%), A92P + S91F (0.024%) and A92P (0.003%), but no A92T (previously associated with gepotidacin resistance) was found. ParC D86 alterations were found in 10.6% of genomes: ParC D86N/G (10.5%), D86N + S87I (0.051%), D86N + S88P (0.012%) and D86G + E91G (0.003%). One isolate had GyrA A92P + ParC D86N alterations, but remained susceptible to gepotidacin (MIC = 0.125 mg/L). No GyrA plus ParC alterations resulted in a gepotidacin MIC > 4 mg/L. Modelling of gepotidacin binding to GyrA A92/A92T/A92P suggested that gepotidacin resistance due to GyrA A92T might be linked to the formation of a new polar contact with DNA. Conclusions In silico mining of 33 213 global gonococcal genomes (isolates from 1928 to 2023) showed that A92 is highly conserved in GyrA, while alterations in D86 of ParC are common. No GyrA plus ParC alterations caused gepotidacin resistance. MIC determination and genomic surveillance of potential antimicrobial resistance determinants are imperative.

Funder

Örebro County Council Research Committee

Foundation for Medical Research at Örebro University Hospital, Örebro, Sweden

UCL-Birkbeck Medical Research Council Doctoral Training Programme, UK

National Institutes of Health

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3