Strathclyde minor groove binders (S-MGBs) with activity against Acanthamoeba castellanii

Author:

Mcgee Leah M C1,Carpinteyro Sanchez Alemao G2,Perieteanu Marina1,Eskandari Kaveh1,Bian Yan1,Mackie Logan2,Young Louise2,Beveridge Rebecca1,Suckling Colin J1,Roberts Craig W2,Scott Fraser J1ORCID

Affiliation:

1. Department of Pure and Applied Chemistry, University of Strathclyde , Glasgow , UK

2. Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde , Glasgow , UK

Abstract

Abstract Background Acanthamoeba spp. is the causative agent of Acanthamoeba keratitis and granulomatous amoebic encephalitis. Strathclyde minor groove binders (S-MGBs) are a promising new class of anti-infective agent that have been shown to be effective against many infectious organisms. Objectives To synthesize and evaluate the anti-Acanthamoeba activity of a panel of S-MGBs, and therefore determine the potential of this class for further development. Methods A panel of 12 S-MGBs was synthesized and anti-Acanthamoeba activity was determined using an alamarBlue™-based trophocidal assay against Acanthamoeba castellanii. Cross-screening against Trypanosoma brucei brucei, Staphylococcus aureus and Escherichia coli was used to investigate selective potency. Cytotoxicity against HEK293 cells allowed for selective toxicity to be measured. DNA binding studies were carried out using native mass spectrometry and DNA thermal shift assays. Results and discussion S-MGB-241 has an IC50 of 6.6 µM against A. castellanii, comparable to the clinically used miltefosine (5.6 µM) and negligible activity against the other organisms. It was also found to have an IC50 > 100 µM against HEK293 cells, demonstrating low cytotoxicity. S-MGB-241 binds to DNA as a dimer, albeit weakly compared to other S-MGBs previously studied. This was confirmed by DNA thermal shift assay with a ΔTm = 1 ± 0.1°C. Conclusions Together, these data provide confidence that S-MGBs can be further optimized to generate new, potent treatments for Acanthameoba spp. infections. In particular, S-MGB-241, has been identified as a ‘hit’ compound that is selectively active against A. castellanii, providing a starting point from which to begin optimization of DNA binding and potency.

Funder

Consejo Nacional de Humanidades, Ciencias y Tecnologías

EPSTC DTP award to the University of Strathclyde

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3