Targeting MAPK14 in microglial cells: neuroimmune implications of Panax ginseng in post-stroke inflammation

Author:

Guan Hongxu1ORCID,Yang Xiaoting2ORCID,Yang Mingfeng3ORCID,Wang Haitao1ORCID

Affiliation:

1. Department of Neurology, Second Affiliated Hospital, Shandong First Medical University , Tai’an 271000 , China

2. Taishan Nursing Vocational College , Tai’an 271000 , China

3. Key Laboratory of Cerebral Microcirculation in Shandong First Medical University , Tai’an, Shandong 271000 , China

Abstract

Abstract Aim This study investigates the molecular mechanisms through which Panax ginseng and Panax notoginseng saponin (PNS) mitigate neuroinflammatory damage and promote neural repair postischemic stroke, utilizing bioinformatics, and experimental approaches. Background Cerebral infarction significantly contributes to disability worldwide, with chronic neuroinflammation worsening cognitive impairments and leading to neurodegenerative diseases. Addressing neuroimmune interactions is crucial for slowing disease progression and enhancing patient recovery, highlighting the need for advanced research in neuroimmune regulatory mechanisms and therapeutic strategies. Objective To elucidate the effects of the traditional Chinese medicine components Panax ginseng and PNS on neuroinflammatory damage following ischemic stroke, focusing on the molecular pathways involved in mitigating inflammation and facilitating neural repair. Methods The study employs single-cell sequencing and transcriptomic analysis to investigate gene expression changes associated with cerebral infarction. Gene set enrichment analysis and weighted gene co-expression network analysis are used to identify key molecular markers and core genes. Furthermore, pharmacological profiling, including functional assays, assesses the impact of Ginsenoside-Rc, a PNS derivative, on microglial cell viability, cytokine production, and reactive oxygen species (ROS) levels. Results Our analysis revealed that MAPK14 is a critical mediator in the neuroinflammatory response to ischemic stroke. Ginsenoside-Rc potentially targets and modulates MAPK14 activity to suppress inflammation. Experimental validation showed that Ginsenoside-Rc treatment, combined with MAPK14 silencing, significantly alters MAPK14 expression and mitigates neuroinflammatory damage, evidenced by reduced microglial cell death, inflammatory factor secretion, and ROS production. Conclusion Ginsenoside-Rc’s modulation of MAPK14 offers a promising therapeutic strategy for reducing neuroinflammation and potentially improving cognitive recovery post-ischemic stroke. This supports the therapeutic application of the traditional Chinese medicine Sanqi in ischemic stroke care, providing a theoretical and experimental foundation for its use. Others Future work will focus on extending these findings through clinical trials to evaluate the efficacy and safety of Ginsenoside-Rc in human subjects, aiming to translate these promising preclinical results into practical therapeutic interventions for ischemic stroke recovery.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3