Composition and Performance of Autologous Engineered Skin Substitutes for Repair or Regeneration of Excised, Full-Thickness Burns

Author:

Boyce Steven T1,Kagan Richard J1

Affiliation:

1. Department of Surgery, University of Cincinnati , Cincinnati, Ohio , USA

Abstract

Abstract Prompt and permanent wound closure after burn injuries remains a requirement for patient recovery. Historically, split-thickness skin autograft (STAG) has served as the prevailing standard of care for closure of extensive, deep burns. Because STAG availability may be insufficient in life-threatening burns, alternatives have been evaluated for safety and efficacy of wound closure. Since the 1970s, alternatives consisting of cultured epidermal keratinocytes, and/or acellular dermal substitutes were studied and translated into services and devices that facilitated wound closure, survival, and recovery after major burns. Cultured epithelial autografts (CEA) promoted epidermal closure of wounds but were not stable during long-term recovery. An acellular dermal substitute consisting of collagen and glycosaminoglycans (C-GAG) provided more uniform dermal repair, and reduced needs for epidermal harvesting but was subject to loss from microbial contamination. More recently, an autologous engineered skin substitute (ESS) has been reported and includes a C-GAG polymer populated with fibroblasts and keratinocytes which form basement membrane. ESS can be applied clinically over a vascularized dermal substitute and generates stable wound closure that is smooth, soft, and strong. Despite these advances, no current alternatives for permanent wound closure restore the anatomy and physiology of uninjured skin. Current alternatives act by mechanisms of wound healing, not by developmental biology by which skin forms in utero with pigment, hair, sweat and sebaceous glands, microvasculature, and nerve. Until full-thickness burns are restored with all of the normal structures and functions of uninjured skin, regenerative medicine of skin will remain an ambitious aspiration for future researchers and engineers to achieve.

Publisher

Oxford University Press (OUP)

Subject

Rehabilitation,Emergency Medicine,Surgery

Reference77 articles.

1. Evolution of skin grafting for treatment of burns: Reverdin pinch grafting to Tanner mesh grafting and beyond;Singh;Burns,2017

2. The mesh skin autograft;Tanner;Plast Reconstr Surg,1964

3. The cultivation of adult mammalian skin epithelium in vitro;Medawar;J Micro Sci,1948

4. Growth and differentation of transplanted epithelial cell cultures;Karasek;J Invest Dermatol,1968

5. Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma;Rheinwald;Cell,1975

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3