Development and validation of techniques for phenotyping ST-elevation myocardial infarction encounters from electronic health records

Author:

Somani Sulaiman1ORCID,Yoffie Stephen1,Teng Shelly1,Havaldar Shreyas1,Nadkarni Girish N123,Zhao Shan14ORCID,Glicksberg Benjamin S15

Affiliation:

1. The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York, USA

2. Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA

3. The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA

4. Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA

5. Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA

Abstract

Abstract Objectives Classifying hospital admissions into various acute myocardial infarction phenotypes in electronic health records (EHRs) is a challenging task with strong research implications that remains unsolved. To our knowledge, this study is the first study to design and validate phenotyping algorithms using cardiac catheterizations to identify not only patients with a ST-elevation myocardial infarction (STEMI), but the specific encounter when it occurred. Materials and Methods We design and validate multi-modal algorithms to phenotype STEMI on a multicenter EHR containing 5.1 million patients and 115 million patient encounters by using discharge summaries, diagnosis codes, electrocardiography readings, and the presence of cardiac catheterizations on the encounter. Results We demonstrate that robustly phenotyping STEMIs by selecting discharge summaries containing “STEM” has the potential to capture the most number of STEMIs (positive predictive value [PPV] = 0.36, N = 2110), but that addition of a STEMI-related International Classification of Disease (ICD) code and cardiac catheterizations to these summaries yields the highest precision (PPV = 0.94, N = 952). Discussion and Conclusion In this study, we demonstrate that the incorporation of percutaneous coronary intervention increases the PPV for detecting STEMI-related patient encounters from the EHR.

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3