Development and application of pharmacological statin-associated muscle symptoms phenotyping algorithms using structured and unstructured electronic health records data

Author:

Sun Boguang1ORCID,Yew Pui Ying2,Chi Chih-Lin23,Song Meijia3,Loth Matt4,Zhang Rui24ORCID,Straka Robert J1ORCID

Affiliation:

1. Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy , Minneapolis, MN 55455, United States

2. Institute for Health Informatics, Office of Academic Clinical Affairs, University of Minnesota , Minneapolis, MN 55455, United States

3. School of Nursing, University of Minnesota , Minneapolis, MN 55455, United States

4. Center for Learning Health System Sciences, University of Minnesota Medical School , Minneapolis, MN 55455, United States

Abstract

Abstract Importance Statins are widely prescribed cholesterol-lowering medications in the United States, but their clinical benefits can be diminished by statin-associated muscle symptoms (SAMS), leading to discontinuation. Objectives In this study, we aimed to develop and validate a pharmacological SAMS clinical phenotyping algorithm using electronic health records (EHRs) data from Minnesota Fairview. Materials and Methods We retrieved structured and unstructured EHR data of statin users and manually ascertained a gold standard set of SAMS cases and controls using the published SAMS-Clinical Index tool from clinical notes in 200 patients. We developed machine learning algorithms and rule-based algorithms that incorporated various criteria, including ICD codes, statin allergy, creatine kinase elevation, and keyword mentions in clinical notes. We applied the best-performing algorithm to the statin cohort to identify SAMS. Results We identified 16 889 patients who started statins in the Fairview EHR system from 2010 to 2020. The combined rule-based (CRB) algorithm, which utilized both clinical notes and structured data criteria, achieved similar performance compared to machine learning algorithms with a precision of 0.85, recall of 0.71, and F1 score of 0.77 against the gold standard set. Applying the CRB algorithm to the statin cohort, we identified the pharmacological SAMS prevalence to be 1.9% and selective risk factors which included female gender, coronary artery disease, hypothyroidism, and use of immunosuppressants or fibrates. Discussion and Conclusion Our study developed and validated a simple pharmacological SAMS phenotyping algorithm that can be used to create SAMS case/control cohort to enable further analysis which can lead to the development of a SAMS risk prediction model.

Funder

National Institutes of Health’s

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3