Retrieval augmented scientific claim verification

Author:

Liu Hao1ORCID,Soroush Ali2,Nestor Jordan G2ORCID,Park Elizabeth2,Idnay Betina3ORCID,Fang Yilu3ORCID,Pan Jane4,Liao Stan4,Bernard Marguerite5,Peng Yifan6ORCID,Weng Chunhua3

Affiliation:

1. School of Computing, Montclair State University , Montclair, NJ 07043, United States

2. Department of Medicine, Columbia University , New York, NY 10027, United States

3. Department of Biomedical Informatics, Columbia University , New York, NY 10027, United States

4. Department of Applied Physics and Applied Mathematics, Columbia University , New York, NY 10027, United States

5. Institute of Human Nutrition, Columbia University , New York, NY 10027, United States

6. Department of Population Health Sciences, Weill Cornell Medicine , New York, NY 10065, United States

Abstract

Abstract Objective To automate scientific claim verification using PubMed abstracts. Materials and Methods We developed CliVER, an end-to-end scientific Claim VERification system that leverages retrieval-augmented techniques to automatically retrieve relevant clinical trial abstracts, extract pertinent sentences, and use the PICO framework to support or refute a scientific claim. We also created an ensemble of three state-of-the-art deep learning models to classify rationale of support, refute, and neutral. We then constructed CoVERt, a new COVID VERification dataset comprising 15 PICO-encoded drug claims accompanied by 96 manually selected and labeled clinical trial abstracts that either support or refute each claim. We used CoVERt and SciFact (a public scientific claim verification dataset) to assess CliVER’s performance in predicting labels. Finally, we compared CliVER to clinicians in the verification of 19 claims from 6 disease domains, using 189 648 PubMed abstracts extracted from January 2010 to October 2021. Results In the evaluation of label prediction accuracy on CoVERt, CliVER achieved a notable F1 score of 0.92, highlighting the efficacy of the retrieval-augmented models. The ensemble model outperforms each individual state-of-the-art model by an absolute increase from 3% to 11% in the F1 score. Moreover, when compared with four clinicians, CliVER achieved a precision of 79.0% for abstract retrieval, 67.4% for sentence selection, and 63.2% for label prediction, respectively. Conclusion CliVER demonstrates its early potential to automate scientific claim verification using retrieval-augmented strategies to harness the wealth of clinical trial abstracts in PubMed. Future studies are warranted to further test its clinical utility.

Funder

National Library of Medicine

National Center for Advancing Translational Sciences

National Institutes of Health

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3